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Anintegral vorticity method for computation of incompressible, three-dimensional,
viscous fluid flows is introduced which is based on a tetrahedral mesh that is fit to
Lagrangian computational points. A fast method for approximation of Biot—Savart
type integrals over the tetrahedral elements is introduced, which uses an analytical
expression for the nearest few elements, Gaussian quadratures for moderately distant
elements, and a multipole expansion acceleration procedure for distant elements. Dif-
ferentiation is performed using a moving least-squares procedure, which maintains
between first- and second-order accuracy for irregularly spaced points. The moving
least-squares method is used to approximate the stretching and diffusion terms in
the vorticity transport equation at each Lagrangian computational point. A new algo-
rithm for the vorticity boundary condition on the surface of an immersed rigid body is
developed that accounts for the effect of boundary vorticity values both on the total
vorticity contained within tetrahedra attached to boundary points and on vorticity
diffusion from the surface during the time step. Sample computations are presented
for uniform flow past a sphere at Reynolds number 100, as well as computations for
validation of specific algorithms. © 2000 Academic Press
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1. INTRODUCTION

The distinguishing feature of complex fluid flows observed in nature, as comparec
the much simpler idealization of potential flow, is the presence of vorticity within th
fluid. Vorticity is of paramount interest in incompressible fluid dynamics because, wh
it contains all of the dynamical information necessary for construction of the velocity a
pressure fields, it nevertheless typically occupies a small subset of the flow domain.
instance, in the flow caused by a vehicle moving through an otherwise stationary, unbour
fluid, significant vorticity is contained only in the boundary layer along the vehicle surfa
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and in the vehicle wake. Velocity and relative pressure, on the other hand, have signific
non-zero values throughout a large region of the flow domain, decaying gradually w
distance away from the vehicle. Another feature of the vorticity field is that, in the abser
of viscosity, the support of vorticity moves as a material region of the flow. Viscosity caus
only a gradual spreading of the vorticity support to neighboring regions of the flow field

Accurate computation of fluid flows is only possible if the regions of the flow containin
significant vorticity are sufficiently well resolved. In traditional approaches to comput
tional fluid dynamics, the computational points are attached to some fixed (Eulerian) ¢
covering the entire flow field (or a truncated part of the flow field for unbounded flows). |
steady flows, the location of the vorticity-containing regions may be kreopniori, and the
distribution of the computational points can be adjusted accordingly to provide sufficientr
olution in these regions. In unsteady flows, the vorticity-containing regions move about
deform with time, and itis much more difficult to resolve the ever-changing vorticity suppc
using a fixed grid. Failure to resolve vorticity with Eulerian methods gives rise to significa
numerical dissipation, which results primarily from truncation errors associated with d
cretization of the nonlinear convection term. As discussed by Landsberg and Murman |
and Kravchenko and Moin [21], the effects of numerical dissipation are prevalent in ma
of the numerical simulations reported in the literature for detached fluid flows, such as
wake behind a body, roll-up of shear layer vortices, trailing vortices behind airfoils, a
large-eddy simulation of turbulent flows. In such cases, numerical dissipation causes |
an enhanced spreading of the vorticity support (such as would be observed physically if
viscosity were artificially increased) and a loss of circulation of the vortex structures.

Lagrangian vorticity methods follow an alternative approach in which the computatior
points are placed only within the vorticity-containing regions of the flow and are allowed
move with the local fluid velocity [23, 27]. A variety of approaches have been introduc:
to account for the spread of vorticity support caused by viscous diffusion, which invol
either advection of the computational points by an additional velocity-like quantity related
diffusion [5, 30] or adaptive methods for generation of new computational points [32, 3
Lagrangian vorticity methods are efficient and highly self-adaptive, since computatiol
points are advected with the vorticity-containing regions by the fluid flow. Lagrangie
vorticity methods exhibit little or no numerical dissipation, since the nonlinear convectic
term is included in the vorticity time derivative.

Despite these advantages, Lagrangian vorticity methods experience a number of se
problems that have precluded their more general usage in the fluid dynamics commui
Some of these problems have been partially resolved in recent years. For instance, col
tation of the Biot—Savart integral for velocity is usually performed in Lagrangian vorticit
methods by interpolating the vorticity surrounding each computational point using a vort
ity element centered at that point. A piecewise-continuous vorticity interpolation is obtain
in cases where the vorticity is uniform across the elements, and a smooth vorticity in
polation is obtained when the vorticity associated with the elements decays smoothly v
distance away from the element center (the latter case is typically called the “vortex bl
method). Although Lagrangian vorticity methods generally require many times fewer co
putational points than Eulerian methods to achieve a given computational accuracy,
integration procedure used to compute velocity witrelements in Lagrangian vorticity
methods igD(N?), and is therefore quite slow for lardie This situation has been improved
by introduction of a variety of acceleration methods [1, 6, 12], which decrease the requi
number of computations t®(N In N), or in some cases tO(N).
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Computational efficiency is affected both by the calculation speed with a given numi
of computational points and by the number of computational points required to resolve
vorticity field. Because the vorticity support in many flows has the form of thin sheets (e.
boundary layers, vortex sheets) or elongated tubes, it is highly desirable that the vorti
elements be anisotropic and able to adjust to the shape of the vorticity support. Anisotre
elements with uniform vorticity, yielding a piecewise continuous vorticity interpolatior
have previously been used for this purpose by Teng [41], Bernard [3], and Huyer and G
[16], and anisotropic elements yielding a smooth vorticity interpolation have been propo
by Marshall and Grant [24]. For problems involving flow past an immersed solid body o
density interface, a further desirable feature of the vorticity interpolation is that the vortic
field not extend over the interface surface. This condition is violated by most previous vor
method computations, resulting in inaccuracy in satisfaction of the no-slip condition at
interface.

Another problem with Lagrangian vorticity methods involves the difficulty of approx
imating the derivatives that occur in the viscous diffusion and (in three dimensions)
vortex stretching terms of the vorticity transport equation. The older types of Lagrang
vorticity methods simulate viscous diffusion using a stochastic “random walk” procedt
[5]- While this procedure is stable for large time steps, itis only accurate for extremely s
values of the time step [9] and is hence very inefficient. A variety of different determinist
diffusion procedures have been applied to Lagrangian vorticity methods in recent ye
Some of these methods [7, 8] require uniformly spaced computational points in orde
be accurate, which limits their usefulness for computations on Lagrangian computatic
points. Other methods, such as that of Shankar and van Dommelen [37], maintain gooc
curacy on irregular points, but require a great deal of computation time (on the same ord
the velocity calculation). Approximation of the velocity derivative in the vortex stretchin
term is usually performed either analytically (by differentiating the velocity induced &
each vorticity element and then summing over the elements) or by a finite difference
proximation of the velocity derivative in the direction of vorticity [25]. The latter procedur
requires two velocity calculations for each computational point (approximately doubli
the computational time for largd) and the former procedure is even less efficient.

The current paper introduces a new approach to Lagrangian vorticity methods, wr
is able to resolve many of the remaining difficulties outlined above. Instead of employi
overlapping vorticity blobs, we interpolate the vorticity field using a tetrahedral mesh tha
fit to the Lagrangian computational points at each time step. A predecessor to this appr
was previously described by Russo and Strain [33], who employed a triangular mesh
computation of two-dimensional, inviscid flows in an unbounded domain. This meth
was later extended to two-dimensional viscous flow with immersed bodies [14, 15]. T
primary advantages of using a tetrahedral or triangular mesh is that (1) the interpolc
vorticity field does not penetrate the surface of a solid body and (2) the vorticity eleme
can be fit to highly anisotropic distributions of the computational points while still yieldin
a continuous vorticity interpolation. The latter advantage is particularly important in thre
dimensional flows with an immersed body, in which the number of isotropic elemer
required to resolve the body boundary layer with even modest values of the Reynolds nur
is excessive. When using tetrahedral elements, itis critical to employ a numerical integra
procedure for calculating the velocity contribution from all but the closest elements in whi
the number of terms in the approximation is set to produce calculations of a prescril
accuracy.
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The current paper utilizes a procedure for numerical differentiation in which a quadra
polynomial is used to provide a smooth, local interpolation of the function whose derivati
is desired using a moving least-squares fit [26]. The accuracy of this procedure is sec
order for uniformly spaced points and between first and second order for very irregula
spaced points. Because the Lagrangian vorticity method exhibits no detectable nume
dissipation [11], we do not encounter problems with rapid diffusion commonly observed
low-order grid-based methods. The moving least- squares method is used to approximat
stretching and diffusion terms in the vorticity transport equation at each computational po

The fundamental field equations governing the vorticity and velocity evolution and tl
body surface pressure are reviewed in Section 2, followed by an overview of the numer
solution procedures. Section 3 presents an efficient method for evaluation of integral:
the Biot—Savart type over the tetrahedral elements, and the accuracy and efficiency of
method are evaluated for computation of the fluid velocity field. The moving least-squa
differentiation procedure is described in Section 4, and validation results are given
problems involving vorticity stretching and diffusion. A new vorticity boundary conditior
algorithmis described in Section 5, which makes use of the tetrahedral vorticity elements
the moving least-squares differentiation method. Issues involving mesh management
computational point generation for near-body flows are discussed in Section 6. Sample
culations for flow past a sphere are presented in Section 7. Conclusions are given in Secti

2. PROBLEM STATEMENT

The numerical method presented in the paper is concerned with the problem of incc
pressible, three-dimensional, fluid flow of uniform density occupying a regiexternal
to an immersed body with bounding surfa8€eThe fluid velocity can be written using the
Helmholtz decomposition as the sum of an irrotational parand a rotational pang,
whereug is induced by the vorticity field according to the Biot—Savart integral
¥ eVl
Ur(%, t) = —%/7r x ‘?gx’t) dv’ 1)

\%

andr =|f| = |x — X/|. The partu, includes any irrotational flow set by the boundary con-
ditions at infinity and any flow induced by a dilatation field (such as a source sh&pt on

When using a Lagrangian vorticity method for a viscous flow, itis convenient to introdus
an additionaldiffusion velocityv, which is used to advect the computational points tc
maintain coverage of the diffusing vorticity support. The time derivative of any quanti
f evaluated at a poirk,(t) that is advected by the sum of the local fluid velocity and the
diffusion velocity, according to

dx Lo .o
== G &ny t) + V(Xn, 1), 2)
dt
is given by
d,f of Y o daf . -
= — Vi =— -VH{. 3
at 8t+(u+v) dt+v (3)

Hered/dt is the time derivative following a point advected with only the fluid velodity
(the usual material derivative). An expression for diffusion velocity is given by Ogami ar
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Akamatsu [30] for two-dimensional flows as
V=—wV(now), (4)

wherew is vorticity magnitude and is the kinematic viscosity. The diffusion velocity can
be chosen as any vector field that allows the computational points to maintain continu
coverage of the vorticity support as it diffuses with time. This requirement is guarante
if the diffusion velocity satisfies the property that the circulation is invariant about ar
circuit C that is material with respect to the velocity fiéld- V. The expression (4) satisfies
this property in two-dimensional flows but not in three-dimensional flows [19], due to tl
effect of curvature of the vortex lines. No expression for diffusion velocity has yet be
found having this property for three-dimensional flows. However, most three-dimensio
diffusion processes are either approximately one- or two-dimensional (such as diffus
vorticity sheets or tubes) or involve diffusion between two different vorticity-containin
regions in which computational points already exist (such as vortex reconnection probler
For this reason, we have found the expression (4) to perform well in maintaining cover:
of vorticity support in a wide variety of two- and three-dimensional flows.

The standard vorticity transport equation is
do =@ V)i +vV20. (5)
dt
For computational points that are advected according to (2), it is more convenient to w
(5) in terms of the derivativd, /dt by adding(V - V)& to each side of (5), giving

1

dy

e @ V)T + (V- V)& + vV23. (6)

It is convenient to rearrange the viscous diffusion terms to write (6) as

d,&

o (&- V)l + D, )

where the viscous ter can be written using (4) in terms of the vorticity magnitude
and a unit directior@ tangent to the vorticity vector as

D= voV2(INw)ad — o - V)3 + voV2a (8)

The forceF on an immersed body with surfaGeand outward unit normal is given by
the sum of the pressure and viscous shear forces as

ﬁ:—/(pﬁ-l—uﬁx[é)d& (9)
S
Alternatively, the force on the body can be computed using the relationship
P -
— =—F, 10
T (10)

where the force impulse is defined byP= 1p [,, X x & dv.
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A Poisson equation for body surface pressure can be obtained by taking the diverge
of the Navier—Stokes equation as

V2B =V (U x &), (11)

whereB=(p — pPx)/p + (k — ko), k =U - 1i/2 is the kinetic energy per unit mass, and
Ps aNdk, are constants. Assuming that— 0 asr — oo (for external flow with uniform
velocity at infinity), the Green’s function solution of (11) is

1_ . 0G oB S
§B(x)-l—/Ba—nda_'/Ga—nda+/GV-(uxw)dv, (12)
S S \%

whereG = 1/47|X — X'|. Taking the inner product of the Navier—Stokes equation Wwith
yields an expression f&rB/dn as

aB - T 1Y I,

Substituting (13) into (12) and using the divergence theorem yields a boundary-intec
equation forB as

] AT -G xa) 1. 00 Folixa
27rB(x)—/Br—3da :_/ {v%nLFWﬁ]da—i—/(ri;w)dv. (14)
S S \

Equation (14) is a Fredholm equation of the second kindXowherer = X — X’ and the
variablesi, G, ando occurring in the integrands are functions of the primed variable. Th
derivation of (14) presented above is a special case of the integral equation version of
full Navier—Stokes equations derived by Uhlman [42].

The governing equations of the velocity and vorticity fields and the boundary integ
equation for body surface pressure involve both integration and differentiation in differe
places. For instance, volumetric integration is necessary to compute the velocity field fr
(1) and to compute a source term in the boundary-integral equation (14) for body surf
pressure. In both cases, the integral has the convolution form

G0 = / f (XK (x — X) dv’, (15)
\%

where the kernel is given bl}l(F):?/rS. Differentiation is necessary to compute the
derivatives on the right-hand side of the vorticity transport equation (7) and to compute
diffusion velocity from the expression (4).

Numerical solution of the flow on a set of Lagrangian points, advected according
(2), requires robust, efficient algorithms for integration and differentiation on irregular
positioned computational points. A new method for efficient approximation of volurr
integrals of the form (15) using a tetrahedral mesh is presented in Section 3. The tetrahe
mesh s also used to identify nearby points to a given computational point, which is emplo
in the moving least-squares numerical differentiation procedure described in Section 4
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3. INTEGRATION OVER TETRAHEDRAL ELEMENTS

A tetrahedral mesh is fit to the set of Lagrangian computational points at each time ¢
using a two-step procedure. Given a set of nodal points on the body si8fand the
outward unit normal oS at each of these points, we first form triangular panelSasing
the Delauney triangularization procedure. The surface panels are then used as the
of an advancing front of tetrahedrons that extend out into the flow, starting with a sin
tetrahedron attached to each surface panel and working outwards to include all voll
points. The point-insertion algorithm described by Borouchaki and Lo [4] is implement
in order to speed up formation of the volume mesh. A fast point search method is utilized
which the computational points are initially sorted into a set of Cartesian boxes that encl
the vorticity support.

At the end of each time step, a computational point is added at the centroid of
existing tetrahedral element whose maximum side length exceeds a prescribet} valu
This procedure is used to maintain a desired resolution of the flow field. As a new m
is formed at the beginning of each time step, any tetrahedral elements with maxim
side length greater than a second prescribed Jalaee eliminated (wherk > 1;). This
procedure is used to avoid connecting the tetrahedral mesh across disjoint vorticity reg
or distant parts of a given vorticity region. For instance, when fitting a mesh to a vort
ring, it is necessary to use this procedure to eliminate tetrahera that span the center re
of the ring. The choice df andl, depends on the length scales of the flow geometry and c
the desired computational resolution. At present, these numbers are prescribed for a ¢
computation, but some adaptive method of specifying these parameters is a desirable f
development.

3.1. Direct integration procedure.The direct integration procedure computes the con
tribution to the integral (15) from each of ti\ tetrahedra of the mesh, so that by summing
over these tetrahedra (15) becomes

) M EOF
gaﬁ=§:/ v’ (16)
m:l\/m

whereV,, is the volume occupied by theth tetrahedron. If we now assume thix)
has a constant valug, over each tetrahedron, the integral in (16) can be simplified usir
V'(1/r)=7/r® and the divergence theorem to write

M =,
p=1 ~ n /
mm=§ m/7d& (17)
m=1 Sn

where S, denotes the bounding surface of timeh tetrahedron and is the outward unit
normal ofS,,. The surface integral in (17) is the same as that which arises in computing
potential due to a source distribution of uniform strength and can be evaluated analytic
[29] for any piecewise planar surfa&g,.

The “analytical” method (17) for evaluating the convolution integral is very inefficien
since it requires evaluation of 12 logarithms and 24 arc tangents for each bf thra-
hedra. TypicallyM is about six times the number of computational points in the flow. I
order to speed up the velocity calculation, we evaluate (16) using numerical integration
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tetrahedra that are sufficiently far away from the point at which the velocity is desired. T
numerical integration procedure uses a three-dimensional Gaussian quadrature appi
for a generalized tetrahedral domain [44], where the integral over each tetrahedron in |
is approximated by the sum

f INT G . -
/ (rxs)r dv’ = ; f(&)rrT'BW.vm. (18)

Vin

The summation formula (18) employ® Gauss points within the tetrahedron, located a
positionsg and having weights\. The volume of thenth tetrahedron is denoted Mg, and
=% —& is the position vector of the field poiRtrelative to the position of thih Gauss
point. If the positions of the four nodes of the tetrahedron are denotég,by=1, ..., 4,
relative to a global coordinate system, then the positions of the Gauss points can be wri
as

4
gl = Z L0l| ﬁas (19)
a=1

where L, are the coordinates of tH¢h Gauss point with respect to the “tetrahedron”
coordinate system [44]. For instandey is the ratio of the volume of the tetrahedron
formed by the poing, and the nodal points,, 7, 714 to the total volume of the original
tetrahedron.

In the current calculations, either a linear (one-point) or a cubic (five-point) numeric
approximation of (16) is used, depending on the distance between the tetrahedron an
field pointX. The weight and abscissa location for the linear approximation are given |
W;=1andLei=(3, %, 3, %), which is equivalent to the standard trapezoidal rule. Th
weights and abscissa locations for the cubic approximation are given in Table I.

The integration method (linear, cubic, or analytic) is selected for each tetrahedron anc
each evaluation of the integral by examining whether the error for the Gaussian quadra
schemes (given by the estimate described in Subsection 3.3) is above a prescribed v
When using this procedure to determine velocity or pressure at a computational point,
analytic method is typically used only for the 20—40 closest tetrahedra, the cubic metho
used for several hundred tetrahedra surrounding the field point, and the linear method
be used for several thousand tetrahedra.

TABLE |
Gauss WeightsW, and Abscissa Locationd_, for a Cubic
Approximation over a Tetrahedron

LDI|
| W a=1 2 3 4
1 —4/5 1/4 1/4 1/4 1/4
2 9/20 12 16 1/6 1/6
3 9/20 16 12 16 16
4 9/20 16 16 12 1/6
5 9/20 /6 16 1/6 12
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3.2. Indirect integration procedure.The direct integration procedure requi@$M N)
computations pertime step to compute the velocity field induced byittetrahedra at thi
computational points. For large valuesMfandN, the time required for direct integration
becomes excessive. The integration can be accelerated by use of a multipole expat
procedure for sufficiently distant tetrahedra, for which the number of computations |
time step reduces to approximateéd(N In M). The multipole expansion procedure first
groups the computational points into a series of boxes, where the boxes are arrangec
tree structure that adapts to the point distribution. The box tree is initiated by placing
computational points in a single box. New generations of boxes are formed by a Clar
Tutty type box division process [6] that uses the following two steps:

(1) the coordinate directiorx(y, or z) is identified along which the maximum sepa-
ration distance between any two computational points in the box is greatest;

(2) the box is divided into two offspring boxes at the median computational point
the identified coordinate direction.

This division process maintains approximately the same number of computational po
in each box for a given box generation. The division process is continued until the num
of points in the smallest-size box is less than a prescribed value.

“Interaction lists” are formed for each of the smallest-size boxes within the tree structu
indicating other boxes with which the box interacts directly and indirectly, such that ea
computational point lies in exactly one box listed on either the direct or indirect interacti
lists of each smallest-size box. These lists are generated by determining whether the dist
between the centers of the smallest-size “target” B@nd the “source” boB is less than
a critical value, where the critical distance is determined for each source box based
prescribed maximum error using the maximum allowed multipole expansion order. O
expansions through second order are considered, since in three dimensions higher-
expansions become increasingly inefficient.

The contribution to the functiog in (16) at a field poink due to thd th member of the
L boxes contained on the indirect interaction list of the smallest-size box containing
pointX is given by the multipole expansion

. 00 00 00 (_1)m+n+k gmn+k [{
G =222 min!k! I''m"kaxmaynazk (?) (20)

m=0 n=0 k=0

The terml| mnkin (20) is the moment of bokabout the box centroid, andr; =X — G is
the position of the field point relative to the box centroid. The speed-up is possible beca
the box moments are independent of the field point (and thus need to be computed only
for each time step) and the derivatives in (20) depend only on the box centroid positi
(and not on the positions of the computational points within the boxes).

The moment; mnk of box| is defined by

T / FR)(X = ™Y — G2)"(Z — Ga)* . (21)
\Y)

Each tetrahedral element is associated with the box structure of one of its nodes, ¢
though the other nodes of the tetrahedron may not lie within this box. Denoting the num
of tetrahedra associated with bRy M, the integral in (21) can be written as a sum ovel
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these tetrahedra as

M,
=Y [ £ = 0™y - 02"z~ ) do. (22)

p=1\/p

The integration over each tetrahedron in (22) is performed analytically using a linear int
polation for the functionf (X) over each tetrahedron of the form

4
F) = f(%a)la (23)
a=1

wherel, are the local tetrahedron coordinates of the priffthe moment arms can simi-
larly be expanded in terms of the tetrahedron coordinates, for instance

4

X—01= (X% —G1la, (24)
a=1

and the moment integrals in (22), up through the quadrapole terms, can be evaluated
the result [44]

alb!cld!
B+a+b+cH+d)!’

/ LALSLSLY dv =BV, (25)

Ve

While the moments of the smallest-size boxes are computed by direct integration of (:
the moments of boxes in previous generations of the tree structure can be more efficie
computed by summing the contributions of the offspring boxes, using the binomial formt
to expand the moments of the difference terms in (22). For instance, the moment of
difference term in thex-direction can be expanded about the ceitef the parent box
to box! as

x—c)" =[x —0n + (@1 —c]" =) (rr")(ql -G (x—a)™".  (26)
r=0

The contribution of offspring bokto the moment of parent baxs then given by

i i i (T) (2) (lt(>(cll —¢1)" (G2 —C2)%C3 — G3)' I m-rm-sk-t). (27)

r=0 s=0 t=0

3.3. Error estimates. The multipole expansion is truncated to include only those value
of the indices such thah + n + k < H, whereH is called the “order” of the expansion.
A theoretical upper bound for the absolute error of the multipole expansion of Birder
given by Salmon and Warren [34] as

Bh2
dH+2 |’

BH 1

(H+2 i

- (H+1)

1
En < d—Dn)? (28)

whereb is an estimate of the radius of the vorticity support (i.e., a length scale associa
with the box or tetrahedron to which the expansion is appli@d,the distance from the
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point about which the expansion is applied (i.e., the box or tetrahedron centroid) to
pointX at which the integral is evaluated, and the moment magnitBdese defined for a
tetrahedrorp by

Bk = / I )IIX — &% do. (29)
VP

A slightly less tight (but simplier to implement) error bound is derived from (28) b
Winckelmanset al.[43] as

Bo B, (H+D/2 /py\ H+L B, H/p\ H+2
st 2(aw) () we(es) (a) | @

The error bound (30) has the advantage that it depends only on the zeroth and second-
momentsBy and By, which are simple to compute. The Newton—Raphson iteration methe
can be used to solve for the critical distanddsom (30) with a prescribed value of absolute
error. Alternatively, omitting the last term in (30) yields an explicit solution for the critica
distance that typically differs from the iterative solution by only 10—-20%.

The multipole expansion error estimate (30) is solved to obtain the critical distances
indirect integration withH < 2, whereBy and B, are obtained by summing the moments
of the tetrahedra associated with each box. The box “dize”"set equal to the maximum
distance between any two computational points in the box. The critical distances are
to determine the direct and indirect interaction lists for each box and to set the multip
expansion order for each indirect interaction.

Upper bounds for the error in the Gaussian quadrature approximation (18) used in
direct part of the integration are obtained by writing the kemfef of the integral (16)
as a polynomial using the multipole expansion (20) about the tetrahedron centroid. -
one-point and five-point Gaussian quadrature algorithms are exact up through the first-
third-order terms of the polynomial expansion, respectively. The Gaussian quadrature €
is bounded by the errdt; andE; of the linear and cubic multipole expansions, respectively
as given by (30). Arelative errdd, is prescribed for the Gaussian quadratures, such that |
absolute error is estimated Bs,s= E,e(Bo/4wd?). Expressions for the critical distances
d; andds for the one-point and five-point Gaussian quadrature approximations are obtai
from (30), after omitting the second term in brackets, as

(di — b)?Erel > C1(By/Bo),  (ds — b)? d2Erel > Cs(By/Bo)?. (31)

The length scalé is set equal to the maximum distance between the tetrahedron centr
and the furthest of its nodes. The constadtsandCs are obtained from (30) as #2and
20r, respectively. Empirical tests with these constants yield relative error values that
about an order of magnitude lower than the theoretical upper bounds.

3.4. Velocity calculation test.The numerical integration procedure described abov
is used to compute the velocity field induced by the fluid vorticity using the Biot—Save
equation (1). In this subsection, we report on a series of test computations for Hill's spher
vortex [2] that examine the speed-up and total error produced by the indirect veloc
calculation method with different box error settings. Results for tetrahedral elements
also compared to results obtained using a vortex blob method [25].
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FIG.1. Plotshowingthe CPU time required for velocity calculation using the tetrahdral elements (solid line
with a fully direct calculation (squares) and for indirect calculation with absolute box £gdr0™", with n=2
(circles),n= 3 (diamonds), and =4 (gradients). Also shown is results of a calculation using vortex blobs witt
indirect calculation and = 3 (crosses, dashed line).

The computational points are initially placed randomly within a sphere of unit radiu
where the number of points ranges between 1000 and 32,000. Computations are perfo!
with an absolute box errar=10", with n=2, 3, and 4, which is used in determining
the critical box separation distance and the order of the multipole expansion in the indi
velocity calculation.

The CPU time for calculations on a Cray C-90 is plotted versus the number of compu
tional points,N, in Fig. 1. The CPU time for the fully direct calculation increases Wtht
arate slightly less tha®(N?) (approximately proportional thl1-8), reflecting the fact that
alarger fraction of the tetrahedra are computed with 1-point Gaussian quadratures than
5-point Gaussian quadratureshincreases. WheN becomes large enough that nearly all
the computational time is used for the 1-point quadratures, the CPU time in the direct «
culation increases in proportion %?. For cases using the multipole acceleration methot
for distant points, the number of points performed with the direct calculation method
approximately constant & varies, where the value of this constant increases as the spe
ified box errore decreases. For sufficiently small, most of the velocity calculation is
performed directly and there is little difference between cases using the accelerated me
and the fully direct calculation. For relatively high valuessafsuch as for the case with
n=2), the CPU time increases nearly in proportionNdn N for the largest values of
N examined. For smaller values of(such as for the case with=4), the values olN
considered in these tests are not high enough to readN thé\ asymptotic dependence.
Calculations with vortex blobs are faster than those with tetrahedral elements by a fa
of approximately 4 forN =1000. However, ad increases, the velocity calculation is
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FIG. 2. Plot showing the root-mean square error for a Hill's spherical vortex, for the same cases listed in
caption for Fig. 1.

primarily performed by indirect (box-point) interactions, so thathby- 32,000 the CPU
time is nearly identical for the tetrahedra with= 2 and for the vorticity blobs.

The root-mean square (rms) error in velocity magnitude is plotted as a functidrirof
Fig. 2 for these same five cases. For the fully direct calculation with tetrahedral elements
error decreases rapidly with increasélinat a rate approximately proportionalto 5. The
rms error for computations using the accelerated method with tetrahedral elements is
observed to initially decrease rapidly with increasalirbut then to eventually asymptote to
an approximately constant value at lafgeThis asymptotic value of the error is controlled
not by the tetrahedral element size, but rather by the error incurred by approximatior
the velocity induced by the tetrahedrals within a box with the multipole expansion. ,
expected, the asymptotic value of the rms velocity error increases with increase in
specified absolute box errer

The rms error for computations with vorticity blobs decreases at a rate approximat
proportional toN~%4, The error with vortex blobs elements is much larger than for any ¢
the cases considered with tetrahedral elements. For instance, the rms error for a comput
with vorticity blobs withN = 32,000 is found to be about the same as for a calculation wit
tetrahedral elements with = 3000 andch = 2. The CPU time in these two computations,
however, is less for the tetrahedral elements than for the vorticity blobs by a factor of ne:
18. Much of the error observed in the calculation with vorticity blobs arises from the fact tt
blobs associated with points near the outer spherical boundary extend outside the nor
radius of the vortex. These results demonstrate the utility of tetrahedral elements for fit
the vorticity field in situations where the vorticity has an abrupt discontinuity. The vortici
at the surface of a solid body immersed in a fluid stream is an especially important exan
of such a flow.
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4. NUMERICAL DIFFERENTIATION ON LAGRANGIAN COMPUTATIONAL POINTS

The numerical procedure used to approximate derivatives is required to remain accu
even when the control points are very irregularly spaced, as would typically be the cas
Lagrangian calculations. A differentiation method exhibiting this property, called the “mo
ing least-squares method,” was recently described by Marshall and Grant [26] in the con
of axisymmetric flows, and this method is summarized in the current section for arbitre
three-dimensional flows.

4.1. Differentiation procedure. Let us suppose that the derivative of a functiogx, t)
is desired at a computational pomtlocated ak,. The value off (X, t) is known only on
the set of irregularly spaced poirits, n=1, ..., N. In the moving least-squares method,
the valuesf, of f (X, t) on these computational points are interpolated locally by a quadrat
polynomial in the components of the position differefice X, or

9

A%, 1) = fmn+ Y Fini Wini (X — Xm). (32)
i=1

In (32), the indexm denotes the computational point about which the interpolation i
performed,Fn,; denotes a set of nine undetermined coefficients of the polynomial, al
Wi (X — Xm) are the associated weight functions, defined by

X —X — Z—Z
Wm,l - m’ Wm,2 - y Rmym’ Wm,3 - m

(1)

2 2
X — Xm Y — ¥Ym Z—7Im
Wm = , Wm = s Wm = .
i < R > e ( Rm ) e ( R )

The parameteRy, is a length scale associated with the computational pujraalled the
point “radius.” The value ofR;, is set for each pointn based on the volum¥), of the
“module” of m, which consists of all tetrahedra attached to painaiccording to

R = (3Vin/41)Y/3, (34)

where the “overlap” parameteris typically set equal to 2.
The coefficients of the polynomial (32) are obtained by alocalized least-square proced
in which the function to be minimized,, is expressed as

N
Em= Z Linnl fn — am(Xn, t)]2~ (35)

n=1

The “localization parametet’ ,, serves to weight the error so as to give most importancet
points that are closest to the poit at which the derivative is desired. In the present study
L mnis set equal to unity for all pointsthat are nodes of tetrahedra in the modulengthe

“first neighbors” ofm) or are nodes of tetrahedra that are in the modules of the first neighbc
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(the “second neighbors” afi). The set of first and second neighbors of a point is called th
“local list” of that point. For all pointsx not on the local list of pointn, the localization
function L, is set to zero and the points are not included in the sum (35). An alternati
choice forL,n is to use a Gaussian function that decays away from the Rgif26].

Minimization of Ep, with respect to each of the coefficieriig; yields a 9x 9 system of
linear equations, which has the form

9

> DmijFmj=Uni. i=1....9, (36)
j=1
where
N N
Dm,ij = Z anan,ian,j s Um.,i = Z(fn - 1:m)l—annm,i (37)
n=1 n=1

andWhmi = Wi (Xn — Xm). Solution of the system (36) yields the coefficieRts; as
9
Fni =Y DyijUnm,j. (38)
j=1

The derivatives off,, can be computed simply by differentiating the polynomial fit (32).
It is noted that when computational points become very isolated, due to inadequate sp
resolution, the condition number of the matidx,;; in (36) becomes very large. In such
cases, the best option is to either eliminate the point or to add additional points so a
improve the matrix conditioning.

Atest of the moving least-squares differentiation procedure was performed for a colum
vortex with axial vorticity variation of Gaussian form, = Aexp(—r?/s¢). The computa-
tional points are arranged in each cross-section in a series of concentric rings, with a re
spacing ofArp and azimuthal spacing also approximately equahtg. Figure 3 shows
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FIG. 3. Root-mean square error Ww, for a columnar vortex with Gaussian vorticity profile for moving
least-square method. Best-fit line has slope of 1.42.
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the absolute error in the Laplacian ®f as a function ofArg/og on a log—log scale. The
slope of the line fit in Fig. 3 is approximately 1.42, which indicates that when applied
irregularly spaced points, the method is between first- and second-order accurate.

4.2. Time stepping and point amalgamatiomhe moving least-squares differentiation
procedure reduces to the second-order centered finite-difference procedure for unifol
spaced points when only the first neighbors are used. The computation of diffusion with
explicit moving least-squares method is subject to a stability limitation on the time ste
similar to that for the explicit heat equation with centered finite-difference [31], of the for

2v At

P 1, (39)

wherel is a measure of the minimum distance between any two computational points ¢
sis a parameter (called the “stability parameter”) that is found empirically to be about 7-

For some fluid flows, such as high Reynolds number boundary layers, the restrict
(39) often requires the time step to be much smaller than it would otherwise need to
based on the other (inviscid) terms in the vorticity and point advection equations. Sir
calculation of the viscous diffusion term in (7) requires far less CPU time than the veloc
calculation, the computation can be considerably speeded up by use of a diffusion sub
that is embedded within the larger inviscid time steps. In the current paper, we use Adal
Bashforth second-order explicit time stepping for the inviscid terms in (2) and (7) anc
second-order predictor-corrector algorithm for the viscous terms.

Amalgamation of the Lagrangian computational points is necessary in cases where
points come so close that the explicit diffusion scheme becomes unstable over the diffu:
substeps. For given values of stability paramsteninimum time stepAty,in, and number
of diffusion substep&p, the critical distance between two Lagrangian control points is

12 _ 2v Atmin.
crit sNo

(40)

When the distance between any two points is less tharthe points are amalgamated by
eliminating both points and creating a new point at the centroid of the two original poin
The vorticity on this new point is set to be the average of the vorticity from the two poin
that are eliminated.

4.3. Vortex stretching term.Use of the moving least-squares differentiation methoc
for approximation of the velocity gradient in the vorticity stretching term in the vorticity
transport equation (7) provides considerable time savings compared to computing this t
analytically. A validation computation was performed for the vortex stretching term for tt
problem of a thin vortex ring that is subject to stretching by a line source aligned alo
the ring central axis (Fig. 4). The vorticity is aligned entirely in the azimuthal direction i
this problem, and in the absence of viscosity, the vorticity at a computational point chan
in direct proportion to the radial position of the point. A plot of the time variation of the
azimuthal vorticity component at a point initially in the center of the vortex core as the rir
radius approximately doubles under the velocity field induced by the line source is giv
in Fig. 5. All length and time scales are non-dimensionalized by the vortex core rad
oo and the vortex rotation timeZ/ T, respectively. The data in Fig. 5 are obtained for ar
inviscid computation with 35 points within each cross-section of the core and 3920 tc
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FIG. 4. Schematic diagram of a vortex ring with a center line source.

computational points. The time step is held fixed\at=0.01, and the source strength is
adjusted to maintain a vortex axial stretching rate of 0.05. The computational predictior
Fig. 5 is found to lie within 1.2% of the analytical solution.

4.4, Vorticity diffusion term. A series of validation computations for approximation of
vorticity diffusion is reported for the case of a columnar vortex with Gaussian variatic
in both the axial vorticity and the axial velocity fields, the latter of which is generate
by a non-zero azimuthal vorticity component. Computational points are initially placed

0.7
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o b
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FIG. 5. Variation of vorticity magnitude with point radial position for a vortex ring that is stretched by a line
source along its axis, comparing the analytical solution (solid line) with computational predictions (circles).
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FIG.6. Relative root-mean square error in axial vorticity for a diffusing columnar vortex with Gaussian axi
vorticity profile. Curves are given for cases with radial point spacing of hotfio, = 0.1 and 0.2, and for cases
with stability parametes of 0.1 (solid curve), 0.5 (dashed curve), 1.0 (dashed-dotted curve), and 1.5 (dott
curve).

concentric circles in each cross-section of the columnar vortex, where the rings are sepal
by a radial distanceérg. The relative root-mean square (rms) errowinis plotted versus
time in Fig. 6 for cases witlar of 0.1 and 0.2 and for values of the stability paramete
s of 0.1, 0.5, 1.0, and 1.5. All length and time scales are non-dimensionalized by
vortex core radiusp and the vortex rotation timeZ/ I', respectively. The results indicate
that the relative error quickly asymptotes to a constant value which is not sensitive to
value of the stability parameter. The asymptotic value of the relative error for cases w
Arg=0.1 is slightly less than half of that for cases witlro =0.2. A series of plots are
given in Figs. 7a—7c showing variation of axial and azimuthal vorticity profiles with tim
for cases withArg = 0.2 (circles) andAry = 0.1 (triangles) in comparison to the analytical
solution (solid and dashed curves, respectively). During the time period considered,
maximum axial and azimuthal vorticity components decrease by factors of ten and fo
respectively.

5. VORTICITY BOUNDARY CONDITION

A change in the value of vorticity at the surface of an immersed rigid body affects tl
vorticity within the volume of the fluid both by changing the vorticity contained within
tetrahedra that are attached to the surface and by changing the vorticity diffusion f
normal to the surface. The vorticity boundary condition is set so as to continually force 1
tangential velocity at the body surface to zero. The vorticity boundary condition employ
in the present paper is related to that described by Koumoutsgkals [20], with the
difference that it is implemented in the context of the least-squares differentiation mett
and it is modified to include the effect of direct vorticity transport to tetrahedra attached
the surface.

We recall that the body surface is divided into a set of flat triangular panels, where
“boundary” point is placed at each vertex of the panels. An &g defined as one-third



TETRAHEDRAL VORTICITY ELEMENT METHOD 103

-
I
o

1.00 %
0.75 |

0.50 |

Axial and Azimuthal Vorticity

Radius, r

0.625

0.500 £,
075 |

0.250 |

Axial and Azimuthal Vorticity

0.125
0.100
0.075 |

0.050 |

0.025

é,&
0000 " " " " 1 : n n n 1
0 1 2

Radius, r

Axial and Azimuthal Vorticity

FIG. 7. \Variation of axial and azimuthal vorticity within a diffusing columnar vortex at tirned), 0.07 and
0.52, showing the computational results far, /o, = 0.2 (circles),Arq /oo = 0.1 (triangles), and the exact solution
(solid and dashed curves).

the area of all panels that are connected tonttie boundary poink,, such that the sum
of A, for all boundary points is equal to the total body surface area. Similarly, a volur
Vm is defined as one-quarter of the sum of the volume of all tetrahedra attached t
boundary poinm. The vortex sheet strengfh,, associated with the slip velocityy, x i

at Xn, is evaluated, whera is the outward unit normal of the body surfaBet X,. The
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total vorticity associated with slip &, is PmAm. A changeAan, in vorticity atXy, causes a
change in the total vorticity associated with tetrahedra in the flovineh &m. Additionally,

the total amount of vorticity to diffuse into the flow from the region of the body surface wit
areaAn surrounding poink,, during the time intervait, t + At) is —v,’f\mAt(acB/an)|m.
Balancing the slip vorticity with the vorticity transport from these two mechanisms give:

FmAm = VimAdm — vARAL(dB/9N)|m. (41)

The normal derivative of vorticity at the surface can be written in terms of the vorticit
values at surrounding computational points as

L)
an

N
= Jom(@p — Gm). (42)
p=1

m

where

Jom = Z(Zrh m”)me]» (43)
j=1

and the matrice®n j; andWpm ; are defined in (37) and (33). Substituting (42) into (41),
and denoting the time step by a superscript, gives

N
PmAm = Vi [opt = of] = vARAL Y~ Jpm(ah™ — ap). (44)
p=1

Equation (44) is solved for the vorticity at the body surface using the fixed-point iteratic
procedure

N
Vin+ vAnAtY " Jom| Gt (@ + D) = Vindh, + 7 Am + vAnAt Z Jpm@RH(@),  (45)

p=1 p=1
p£m p#£M

whereq is an iteration index. This iteration procedure converges with a relative error of le
than 10# in only 3—4 iterations.

6. EULER LAYER AND POINT CREATION

In computing flow past an immersed body, it is necessary to maintain a sufficient num
of points above each body panel to resolve the boundary layer. In particular, if the tc
number of points in the local list of a computational peimfalls below about 20, the matrix
Dn,jj in (36) becomes ill-conditioned, making the differentiation procedure inaccurate.
ensure resolution of the boundary layer for all times, a thin “Euler layer” of fixed points
employed above each body panel. Typically, the points within the Euler layer are stagge
such that the computational points on the body coincide with the vertices of the bc
panels, the computational points in the next layer are placed a prescribed distance a
the panel centroids, and subsequent layers are alternately placed above the panel ve
and centroids. Vorticity evolution for points within the Euler layer is performed using th
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Extended
Panel

FIG. 8. lllustration of the construction of aextended pangdassing through a poimh oriented over a panél

Lagrangian form (7) of the vorticity transport equation by firstadvecting the points accordi
to (2) and then interpolating the vorticity back onto the original point positions.

New Lagrangian points are created at the outer surface of the Euler layer above e
panel. The first step in the point creation process is to determine the closest Lagran
computational point that lies “above” each of the panels. This determination is perforn
using the concept of an “extended panel,” illustrated in Fig. 8. The extended panel of a p
m relative to a panek is constructed first by assigning a unit normal to each vertex of
(using a weighted average of the unit normal of the attached panels), and then formi
triangle that passes through the pamties parallel to panét, and has vertices on the lines
coincident with the normal of the vertices of pakel

The closest Lagrangian point above a pansldetermined by constructing the extended
panel for each nearby Lagrangian point. Three triangles are then drawn on the plane o
extended triangle, each with one vertex at the paiind two vertices coinciding with the
vertices of the extended panel. If the sum of the areas of these three triangles is equal t
area of the extended panel, then the poiig considered to be “above” the pakd€Fig. 9a).

If this sum is greater than the area of the extended panel, thenmasntonsidered to be
above some other panel (Fig. 9b).

For each Lagrangian point that is found to be above the ganke normal distance of
the point to the panel is computed. The Lagrangian point (not including points in the Eu
layer) with the least normal distance to the panel is considered to be the “closest” poir
panelk. A new Lagrangian computational point is created above paaiehny time step for
which the normal distance of the closest point to the panel is greater than some prescr
value. The new pointis located at the centroid of the tetrahedron formed by the closest p
and the three points located above the nodes of gaaelthe outer surface of the Euler
layer, and the vorticity value at the new point is set to be the average of the vorticity at
vertices of this tetrahedron. If no Lagrangian point is found above a panel, then a new p
is created above this panel at a prescribed distance from the outer surface of the Euler
and the vorticity at this point is set by extrapolation from points within the Euler layer.

7. FLOW PAST A SPHERE

The Lagrangian vorticity method described in the preceding sections is utilized for co
putation of impulsive flow past a sphere at Reynolds nhumber 100 for cases with two differ
(“medium” and “high”) flow field resolutions. The flow variables are nondimensionalize
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(@) (b)

FIG. 9. lllustration of a method for determining whether a painlies in a triangle with verticeg,, E,, Es,
by determining whether the sum of the ar@gs A,, A; of the three sub-triangles formed by two vertices and the
pointm s (a) equal to or (b) greater than the area of the original triangle.

using the sphere diameter and the free-stream velocity for length and velocity scales, an
free-stream velocity is oriented in the positikelirection. The sphere surface is discretized
using 1280 panels in the medium resolution case and 5210 panels in the high resolution
The panels have the form of equilateral triangles of equal size (Fig. 10a). The computati
are started by placing computational points in seven layers above the panels separatse
a uniform radial distance of 0.01, with points placed above the body nodes and above
panel centers in alternate layers. The first five layers are composed of fixed “Euler lay
points and the remaining two layers are free “Lagrangian” points. The mesh general
parameter$; andl, are set equal to 0.2 and 0.3, respectively.

The vorticity field is initialized by first computing the potential flow past the body, witt
no vorticity assigned to the computational points, using a standard source panel mef
[13]. The vorticity associated with the surface slip is then distributed to the points in tl
boundary layer using a Gaussian distribution above each panel of théfer@y / /7o)
exp(—y?2/a?), wherey is the panel vorticity sheet streng, is the normal distance from
the body surface, and the length scalés chosen as 0.055. The surface slip velocity is
recomputed with this vorticity distribution, and the vorticity associated with the slip is aga
distributed to the boundary layer points above each panel. This process is repeated unt
maximum slip velocity is less than a specified value. The slip velocity remains small duri
the course of the computations, with typical root-mean square value of about 1% of
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FIG. 10. lllustration showing (a) placement of source panels on the sphere surface and (b) cross-secti
view of the tetrahedral mesh in thxey plane at = 3.5.

free-stream velocity for both the medium and high resolution cases. The surface slipis a
ciated with the vorticity that is diffused off the surface during the time step and is hence
expected to approach zero even in the limit of very high spatial resolution. Doubling the ti
step is observed to approximately double the surface slip. The medium and high resolt
results generally remain similar throughout the computations, as shown in the comparisc
Table Il for timet =4.0.

The computations proceed from this initial state with a fixed time steptef 0.01.
Fifteen viscous substeps are used for each of the larger time steps. New points are cr
outside of the Euler layer surrounding the sphere whenever the closest Lagrangian
exceeds a normal distance of 0.02 away from the outer edge of the Euler layer. A |
of Lagrangian points is amalgamated when their separation distance is less than 0.0
cross-sectional slice of the tetrahedral mesh formed during a typical calculation is shc
in Fig. 10b. The number of tetrahedral elements varies from about 35,000 to 600,000
the medium resolution case and from about 130,000 to 750,000 for the high resolution «

TABLE Il
Comparison of Results for High and Medium Resolution Computations
of Flow Past a Sphere at Re =100 antl= 4.0

Quantity Medium resolution High resolution
Maximum velocity 1.1361 1.1380
Linear impulse Py 2.8068 2.7551
Kinetic energy 4.6689 4.6020
Enstrophy 19.157 18.807

Helicity 1.1750 1.2269
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FIG. 11. Time variation of the drag coefficient impulsively started flow past a sphere atIR€, showing
computed results (symbols) and steady-state reference value (dashed line).

during the course of the computation. The number of tetrahedral elements can be mod
by adjusting the parameters that control point amalgamation and point creation above
surface and within large-size tetrahedra.

The computed drag coefficie@t = D/(0.50U?7 R?) is plotted as a function of time in
Fig. 11. The drag is computed from the expression (10), and the linear impulse is compt
by analytically integrating over the tetrahedral elements using (25) with linear vorticity va
ation over each element. The drag coefficient results are compared to the steady-state
1.09 from the Schiller—Naumann formula [38} = (24/Re)[1 + 0.15 R&€%%7], shown by
a dashed line in Fig. 11. Similarly, the highly precise computations of Tabata and Itaki
[39] give the steady-state drag coefficient as 1.08@60005. We do not attempt to com-
pare to transient drag values for impulsively started flow, since these will depend on
initial conditions of the computation. The computed drag coefficient is observed to initia
decrease with time, slightly overshoot the steady-state value, and then to oscillate in
range 1.09t 0.04 for times later than about 2.0.

The computational predictions for surface pressure coefficient and azimuthal compor
of the surface vorticity as a function éfat timet =4.0 are compared with steady-state
reference data from fixed-grid finite-difference computations of Johnson [17] (using t
velocity-pressure formulation) and Shen and Loc [38] (using the vorticity-velocity formt
lation) and in Figs. 12 and 13. The computed surface pressure is close to the reference v:
in the front of the sphere and fairly close in the rear of the sphere, with maximum deviati
of about 10% of the reference value néat 110°. Similarly, the azimuthal component of
the surface vorticity is close to the values obtained by Johnson [17] in the front of the sph
but exhibits a lag of about 20n the rear of the sphere. This lag in surface vorticity value
is consistent with the observation that boundary layer separation in the current comp
tions at this time occurs at abauit= 135, whereas the steady-state reference value i$ 12
[18, 28, 37].

The current computations are continued to tiree4.0. At this time, many of the features
of the computed flow around the body, such as the body drag and the surface vorticity
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FIG. 12. Comparison of computed surface pressure variation (solid curve) for flow past a sphere B®e
andt = 4.0 with steady-state computational data of Johnson [17] (dashed curve) and Shen and Loc [38] (dash-d
curve).

pressure fields, appear to be approaching the steady-state values. A plot of th& itgh
bubble of reversed flow behind the sphere versus time is given in Fig. 14. The bubble ler
grows steadily during the entire computation and clearly has not reached an asymptotic
by the ending time& =4.0. A rough estimate obtained by extrapolating the bubble lengt
growth curve to the reference value 0.87 and from the results of transient-flow computati
by other investigators [17, 38] suggests that the near wake will not reach an approxin
steady-state condition until a time of about 8-12.

Lagrangian vorticity methods in general are designed for computation of transient flc
and are not particularly efficient for computation of steady-state flow fields due to the
strictions imposed by explicit time-stepping. Steady-state flows are particularly difficult
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FIG.13. Comparison of computed azimuthal vorticity variation (solid curve) for flow past a sphere-at @
andt = 4.0 with steady-state computational data of Johnson [17] (dashed curve) and Shen and Loc [38] (dash-d
curve).
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FIG. 14. Time variation of computed wake bubble len@lffior flow past a sphere at Re100.

compute with the method described in the current paper due to the stability restrictions
posed by use of the moving least-squares differentiation method. We are currently work
on development of an implicit time-stepping algorithm for use with the moving least-squal
differentiation method that should resolve this problem.

8. CONCLUSIONS

Lagrangian vortex methods are commonly used for two- and three-dimensional invis
flows and for viscous flows with no solid boundaries. These methods offer the advanta
that they directly follow the evolving vorticity field and they exhibit little or no numerical
dissipation. The present paper describes one approach to extending Lagrangian vorti
based methods to three-dimensional viscous flows with a no-slip boundary. The propc
tetrahedral vorticity element method deviates from the usual blob and filament basis «
ployed in vortex methods by interpolating the vorticity over a tetrahedral mesh that
continuously refit to the Lagrangian computational points. Tetrahedral elements allow €
cient discretization of highly anisotropic vorticity support regions, such as boundary layt
and thin vortex sheets and tubes, in such a manner that vorticity does not bleed ovelr
surface of an immersed body.

A fast algorithm is presented for computation of the velocity induced by the tetrah
dral elements, consisting of a combination of analytic integration for the nearest few
ements, numerical integration with Gaussian quadratures for tetrahedra at intermec
distances, and a box-point multipole acceleration method for distant elements. This fas
tegration method is also employed for calculation of the inhomogeneous term occurring
the boundary-integral equation for surface pressure on an immersed body. A moving le
squares algorithm is employed for approximation of derivatives occurring in the stretchi
and diffusion terms of the vorticity transport equation, and a diffusion velocity approach
used to adaptively follow the vorticity support in the presence of diffusion. Validation calci
lations for Hill's spherical vortex demonstrate that the velocity calculation in the tetrahed
mesh formulation converges much faster than the conventional vortex blob method. Vv
dation calculations for a thin vortex ring with a line source along its axis and for diffusic
of a Gaussian columnar vortex with axial flow demonstrate that the moving least-sque
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algorithm accurately approximates vorticity stretching and diffusion on Lagrangian poil
without point regridding. A new algorithm for specification of the vorticity boundary con
dition is also described that takes into account both normal vorticity diffusion during t
time step and direct vorticity transport to tetrahedra attached to boundary points.

The tetrahedral vorticity element method is employed to compute impulsive flow p:
a sphere at Reynolds number 100 with two different flow resolutions. The computatic
demonstrate the functioning of the method and suggest areas for future improvement.
computed drag coefficient is found to quickly asymptote to close to the reference value,
the computed pressure and vorticity profiles were in excellent agreement with refere
values on the front side of the sphere. However, the explicit time-stepping algorithm use
the current version of this method is not efficient for computation of steady-state flow fiell
and the computations were discontinued before the near wake had fully achieved steady
Development of implicit time-stepping for the moving least-square differentiation meth
should improve the computational efficiency, as would implementation of the method i
parallel computing environment. Nevertheless, the current form of the tetrahedral vortic
element method is well suited for time-accurate computation of transient incompress
flow problems, as demonstrated for computation of three-dimensional vortex interact
with a circular cylinder in the recent Ph.D. dissertation research of Gossler [10].
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